食谱#

这是一个简短而有趣的示例以及有用的熊猫食谱链接的存储库。我们鼓励用户添加到此文档中。

在本节中添加有趣的链接和/或内联示例是一个很棒的First Pull Request

已尽可能插入简化、精简、新用户友好的内联示例,以增强 Stack-Overflow 和 GitHub 链接。许多链接包含扩展信息,高于内联示例提供的信息。

pandas (pd) 和 NumPy (np) 是仅有的两个缩写导入模块。其余的则为新用户显式导入。

成语#

这些是一些整洁的熊猫idioms

if-then/if-then-else 在一列上,并分配给另一列或多列:

In [1]: df = pd.DataFrame(
   ...:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ...: )
   ...: 

In [2]: df
Out[2]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

如果-那么... #

一列上的 if-then

In [3]: df.loc[df.AAA >= 5, "BBB"] = -1

In [4]: df
Out[4]: 
   AAA  BBB  CCC
0    4   10  100
1    5   -1   50
2    6   -1  -30
3    7   -1  -50

分配给 2 列的 if-then:

In [5]: df.loc[df.AAA >= 5, ["BBB", "CCC"]] = 555

In [6]: df
Out[6]: 
   AAA  BBB  CCC
0    4   10  100
1    5  555  555
2    6  555  555
3    7  555  555

添加具有不同逻辑的另一行,以执行 -else

In [7]: df.loc[df.AAA < 5, ["BBB", "CCC"]] = 2000

In [8]: df
Out[8]: 
   AAA   BBB   CCC
0    4  2000  2000
1    5   555   555
2    6   555   555
3    7   555   555

或者在设置掩码后使用 pandas

In [9]: df_mask = pd.DataFrame(
   ...:     {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False] * 2}
   ...: )
   ...: 

In [10]: df.where(df_mask, -1000)
Out[10]: 
   AAA   BBB   CCC
0    4 -1000  2000
1    5 -1000 -1000
2    6 -1000   555
3    7 -1000 -1000

if-then-else 使用 NumPy 的 where()

In [11]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [12]: df
Out[12]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [13]: df["logic"] = np.where(df["AAA"] > 5, "high", "low")

In [14]: df
Out[14]: 
   AAA  BBB  CCC logic
0    4   10  100   low
1    5   20   50   low
2    6   30  -30  high
3    7   40  -50  high

分裂#

使用布尔标准分割框架

In [15]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [16]: df
Out[16]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [17]: df[df.AAA <= 5]
Out[17]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50

In [18]: df[df.AAA > 5]
Out[18]: 
   AAA  BBB  CCC
2    6   30  -30
3    7   40  -50

构建标准#

使用多列标准进行选择

In [19]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [20]: df
Out[20]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

…并且(没有赋值则返回一个系列)

In [21]: df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"]
Out[21]: 
0    4
1    5
Name: AAA, dtype: int64

…或者(没有赋值则返回一个系列)

In [22]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"]
Out[22]: 
0    4
1    5
2    6
3    7
Name: AAA, dtype: int64

…或者(通过赋值修改 DataFrame。)

In [23]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 999

In [24]: df
Out[24]: 
   AAA  BBB  CCC
0  999   10  100
1    5   20   50
2  999   30  -30
3  999   40  -50

使用 argsort 选择数据最接近特定值的行

In [25]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [26]: df
Out[26]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [27]: aValue = 43.0

In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]: 
   AAA  BBB  CCC
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50

使用二元运算符动态减少条件列表

In [29]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [30]: df
Out[30]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [31]: Crit1 = df.AAA <= 5.5

In [32]: Crit2 = df.BBB == 10.0

In [33]: Crit3 = df.CCC > -40.0

人们可以硬编码:

In [34]: AllCrit = Crit1 & Crit2 & Crit3

…或者可以通过动态构建的标准列表来完成

In [35]: import functools

In [36]: CritList = [Crit1, Crit2, Crit3]

In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)

In [38]: df[AllCrit]
Out[38]: 
   AAA  BBB  CCC
0    4   10  100

选择#

数据框#

索引文档。

同时使用行标签和值条件

In [39]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [40]: df
Out[40]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]: 
   AAA  BBB  CCC
0    4   10  100
2    6   30  -30

使用 loc 进行面向标签的切片和 iloc 位置切片GH 2904

In [42]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]},
   ....:     index=["foo", "bar", "boo", "kar"],
   ....: )
   ....: 

有两种显式切片方法,第三种是一般情况

  1. 面向位置(Python 切片风格:不包括末尾)

  2. 面向标签(非Python切片风格:包括结尾)

  3. 一般(切片样式:取决于切片是否包含标签或位置)

In [43]: df.loc["bar":"kar"]  # Label
Out[43]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

# Generic
In [44]: df[0:3]
Out[44]: 
     AAA  BBB  CCC
foo    4   10  100
bar    5   20   50
boo    6   30  -30

In [45]: df["bar":"kar"]
Out[45]: 
     AAA  BBB  CCC
bar    5   20   50
boo    6   30  -30
kar    7   40  -50

当索引由具有非零起始或非单位增量的整数组成时,就会出现歧义。

In [46]: data = {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}

In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4])  # Note index starts at 1.

In [48]: df2.iloc[1:3]  # Position-oriented
Out[48]: 
   AAA  BBB  CCC
2    5   20   50
3    6   30  -30

In [49]: df2.loc[1:3]  # Label-oriented
Out[49]: 
   AAA  BBB  CCC
1    4   10  100
2    5   20   50
3    6   30  -30

使用逆运算符 (~) 获取掩码的补码

In [50]: df = pd.DataFrame(
   ....:     {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
   ....: )
   ....: 

In [51]: df
Out[51]: 
   AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]: 
   AAA  BBB  CCC
1    5   20   50
3    7   40  -50

新专栏#

使用 DataFrame.map(以前称为 applymap)高效动态地创建新列

In [53]: df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})

In [54]: df
Out[54]: 
   AAA  BBB  CCC
0    1    1    2
1    2    1    1
2    1    2    3
3    3    2    1

In [55]: source_cols = df.columns  # Or some subset would work too

In [56]: new_cols = [str(x) + "_cat" for x in source_cols]

In [57]: categories = {1: "Alpha", 2: "Beta", 3: "Charlie"}

In [58]: df[new_cols] = df[source_cols].map(categories.get)

In [59]: df
Out[59]: 
   AAA  BBB  CCC  AAA_cat BBB_cat  CCC_cat
0    1    1    2    Alpha   Alpha     Beta
1    2    1    1     Beta   Alpha    Alpha
2    1    2    3    Alpha    Beta  Charlie
3    3    2    1  Charlie    Beta    Alpha

将 min() 与 groupby 一起使用时保留其他列

In [60]: df = pd.DataFrame(
   ....:     {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]}
   ....: )
   ....: 

In [61]: df
Out[61]: 
   AAA  BBB
0    1    2
1    1    1
2    1    3
3    2    4
4    2    5
5    2    1
6    3    2
7    3    3

方法 1: idxmin() 获取最小值的索引

In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]: 
   AAA  BBB
1    1    1
5    2    1
6    3    2

方法2:排序然后取第一个

In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]: 
   AAA  BBB
0    1    1
1    2    1
2    3    2

请注意相同的结果,但索引除外。

多重索引#

多重索引文档。

从带标签的帧创建多重索引

In [64]: df = pd.DataFrame(
   ....:     {
   ....:         "row": [0, 1, 2],
   ....:         "One_X": [1.1, 1.1, 1.1],
   ....:         "One_Y": [1.2, 1.2, 1.2],
   ....:         "Two_X": [1.11, 1.11, 1.11],
   ....:         "Two_Y": [1.22, 1.22, 1.22],
   ....:     }
   ....: )
   ....: 

In [65]: df
Out[65]: 
   row  One_X  One_Y  Two_X  Two_Y
0    0    1.1    1.2   1.11   1.22
1    1    1.1    1.2   1.11   1.22
2    2    1.1    1.2   1.11   1.22

# As Labelled Index
In [66]: df = df.set_index("row")

In [67]: df
Out[67]: 
     One_X  One_Y  Two_X  Two_Y
row                            
0      1.1    1.2   1.11   1.22
1      1.1    1.2   1.11   1.22
2      1.1    1.2   1.11   1.22

# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns])

In [69]: df
Out[69]: 
     One        Two      
       X    Y     X     Y
row                      
0    1.1  1.2  1.11  1.22
1    1.1  1.2  1.11  1.22
2    1.1  1.2  1.11  1.22

# Now stack & Reset
In [70]: df = df.stack(0, future_stack=True).reset_index(1)

In [71]: df
Out[71]: 
    level_1     X     Y
row                    
0       One  1.10  1.20
0       Two  1.11  1.22
1       One  1.10  1.20
1       Two  1.11  1.22
2       One  1.10  1.20
2       Two  1.11  1.22

# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ["Sample", "All_X", "All_Y"]

In [73]: df
Out[73]: 
    Sample  All_X  All_Y
row                     
0      One   1.10   1.20
0      Two   1.11   1.22
1      One   1.10   1.20
1      Two   1.11   1.22
2      One   1.10   1.20
2      Two   1.11   1.22

算术#

使用需要广播的 MultiIndex 执行算术

In [74]: cols = pd.MultiIndex.from_tuples(
   ....:     [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]]
   ....: )
   ....: 

In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols)

In [76]: df
Out[76]: 
          A                   B                   C          
          O         I         O         I         O         I
n  0.469112 -0.282863 -1.509059 -1.135632  1.212112 -0.173215
m  0.119209 -1.044236 -0.861849 -2.104569 -0.494929  1.071804

In [77]: df = df.div(df["C"], level=1)

In [78]: df
Out[78]: 
          A                   B              C     
          O         I         O         I    O    I
n  0.387021  1.633022 -1.244983  6.556214  1.0  1.0
m -0.240860 -0.974279  1.741358 -1.963577  1.0  1.0

切片#

使用 xs 对 MultiIndex 进行切片

In [79]: coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")]

In [80]: index = pd.MultiIndex.from_tuples(coords)

In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"])

In [82]: df
Out[82]: 
        MyData
AA one      11
   six      22
BB one      33
   two      44
   six      55

要获取第一层和第一轴的横截面索引:

# Note : level and axis are optional, and default to zero
In [83]: df.xs("BB", level=0, axis=0)
Out[83]: 
     MyData
one      33
two      44
six      55

…现在是第一轴的第二层。

In [84]: df.xs("six", level=1, axis=0)
Out[84]: 
    MyData
AA      22
BB      55

使用 xs 对 MultiIndex 进行切片,方法#2

In [85]: import itertools

In [86]: index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"]))

In [87]: headr = list(itertools.product(["Exams", "Labs"], ["I", "II"]))

In [88]: indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"])

In [89]: cols = pd.MultiIndex.from_tuples(headr)  # Notice these are un-named

In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]

In [91]: df = pd.DataFrame(data, indx, cols)

In [92]: df
Out[92]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Comp      70  71   72  73
        Math      71  73   75  74
        Sci       72  75   75  75
Quinn   Comp      73  74   75  76
        Math      74  76   78  77
        Sci       75  78   78  78
Violet  Comp      76  77   78  79
        Math      77  79   81  80
        Sci       78  81   81  81

In [93]: All = slice(None)

In [94]: df.loc["Violet"]
Out[94]: 
       Exams     Labs    
           I  II    I  II
Course                   
Comp      76  77   78  79
Math      77  79   81  80
Sci       78  81   81  81

In [95]: df.loc[(All, "Math"), All]
Out[95]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Math      71  73   75  74
Quinn   Math      74  76   78  77
Violet  Math      77  79   81  80

In [96]: df.loc[(slice("Ada", "Quinn"), "Math"), All]
Out[96]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Ada     Math      71  73   75  74
Quinn   Math      74  76   78  77

In [97]: df.loc[(All, "Math"), ("Exams")]
Out[97]: 
                 I  II
Student Course        
Ada     Math    71  73
Quinn   Math    74  76
Violet  Math    77  79

In [98]: df.loc[(All, "Math"), (All, "II")]
Out[98]: 
               Exams Labs
                  II   II
Student Course           
Ada     Math      73   74
Quinn   Math      76   77
Violet  Math      79   80

使用 xs 设置 MultiIndex 的部分

排序#

使用 MultiIndex 按特定列或有序列列表排序

In [99]: df.sort_values(by=("Labs", "II"), ascending=False)
Out[99]: 
               Exams     Labs    
                   I  II    I  II
Student Course                   
Violet  Sci       78  81   81  81
        Math      77  79   81  80
        Comp      76  77   78  79
Quinn   Sci       75  78   78  78
        Math      74  76   78  77
        Comp      73  74   75  76
Ada     Sci       72  75   75  75
        Math      71  73   75  74
        Comp      70  71   72  73

部分选择,排序的需要GH 2995

级别#

将级别添加到多索引之前

展平分层列

缺失数据

缺失的数据文档。

向前填充反向时间序列

In [100]: df = pd.DataFrame(
   .....:     np.random.randn(6, 1),
   .....:     index=pd.date_range("2013-08-01", periods=6, freq="B"),
   .....:     columns=list("A"),
   .....: )
   .....: 

In [101]: df.loc[df.index[3], "A"] = np.nan

In [102]: df
Out[102]: 
                   A
2013-08-01  0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06       NaN
2013-08-07 -0.424972
2013-08-08  0.567020

In [103]: df.bfill()
Out[103]: 
                   A
2013-08-01  0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 -0.424972
2013-08-07 -0.424972
2013-08-08  0.567020

cumsum 重置为 NaN 值

代替

使用反向引用替换

分组#

分组文档。

使用 apply 进行基本分组

与 agg 不同,apply 的可调用对象会传递一个子 DataFrame,它使您可以访问所有列

In [104]: df = pd.DataFrame(
   .....:     {
   .....:         "animal": "cat dog cat fish dog cat cat".split(),
   .....:         "size": list("SSMMMLL"),
   .....:         "weight": [8, 10, 11, 1, 20, 12, 12],
   .....:         "adult": [False] * 5 + [True] * 2,
   .....:     }
   .....: )
   .....: 

In [105]: df
Out[105]: 
  animal size  weight  adult
0    cat    S       8  False
1    dog    S      10  False
2    cat    M      11  False
3   fish    M       1  False
4    dog    M      20  False
5    cat    L      12   True
6    cat    L      12   True

# List the size of the animals with the highest weight.
In [106]: df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()], include_groups=False)
Out[106]: 
animal
cat     L
dog     M
fish    M
dtype: object

使用 get_group

In [107]: gb = df.groupby("animal")

In [108]: gb.get_group("cat")
Out[108]: 
  animal size  weight  adult
0    cat    S       8  False
2    cat    M      11  False
5    cat    L      12   True
6    cat    L      12   True

应用于组中的不同项目

In [109]: def GrowUp(x):
   .....:     avg_weight = sum(x[x["size"] == "S"].weight * 1.5)
   .....:     avg_weight += sum(x[x["size"] == "M"].weight * 1.25)
   .....:     avg_weight += sum(x[x["size"] == "L"].weight)
   .....:     avg_weight /= len(x)
   .....:     return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"])
   .....: 

In [110]: expected_df = gb.apply(GrowUp, include_groups=False)

In [111]: expected_df
Out[111]: 
       size   weight  adult
animal                     
cat       L  12.4375   True
dog       L  20.0000   True
fish      L   1.2500   True

扩大适用范围

In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])

In [113]: def cum_ret(x, y):
   .....:     return x * (1 + y)
   .....: 

In [114]: def red(x):
   .....:     return functools.reduce(cum_ret, x, 1.0)
   .....: 

In [115]: S.expanding().apply(red, raw=True)
Out[115]: 
0    1.010000
1    1.030200
2    1.061106
3    1.103550
4    1.158728
5    1.228251
6    1.314229
7    1.419367
8    1.547110
9    1.701821
dtype: float64

用组中其余部分的平均值替换某些值

In [116]: df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]})

In [117]: gb = df.groupby("A")

In [118]: def replace(g):
   .....:     mask = g < 0
   .....:     return g.where(~mask, g[~mask].mean())
   .....: 

In [119]: gb.transform(replace)
Out[119]: 
   B
0  1
1  1
2  1
3  2

按聚合数据对组进行排序

In [120]: df = pd.DataFrame(
   .....:     {
   .....:         "code": ["foo", "bar", "baz"] * 2,
   .....:         "data": [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
   .....:         "flag": [False, True] * 3,
   .....:     }
   .....: )
   .....: 

In [121]: code_groups = df.groupby("code")

In [122]: agg_n_sort_order = code_groups[["data"]].transform("sum").sort_values(by="data")

In [123]: sorted_df = df.loc[agg_n_sort_order.index]

In [124]: sorted_df
Out[124]: 
  code  data   flag
1  bar -0.21   True
4  bar -0.59  False
0  foo  0.16  False
3  foo  0.45   True
2  baz  0.33  False
5  baz  0.62   True

创建多个聚合列

In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq="2min")

In [126]: ts = pd.Series(data=list(range(10)), index=rng)

In [127]: def MyCust(x):
   .....:     if len(x) > 2:
   .....:         return x.iloc[1] * 1.234
   .....:     return pd.NaT
   .....: 

In [128]: mhc = {"Mean": "mean", "Max": "max", "Custom": MyCust}

In [129]: ts.resample("5min").apply(mhc)
Out[129]: 
                     Mean  Max Custom
2014-10-07 00:00:00   1.0    2  1.234
2014-10-07 00:05:00   3.5    4    NaT
2014-10-07 00:10:00   6.0    7  7.404
2014-10-07 00:15:00   8.5    9    NaT

In [130]: ts
Out[130]: 
2014-10-07 00:00:00    0
2014-10-07 00:02:00    1
2014-10-07 00:04:00    2
2014-10-07 00:06:00    3
2014-10-07 00:08:00    4
2014-10-07 00:10:00    5
2014-10-07 00:12:00    6
2014-10-07 00:14:00    7
2014-10-07 00:16:00    8
2014-10-07 00:18:00    9
Freq: 2min, dtype: int64

创建一个值计数列并重新分配回 DataFrame

In [131]: df = pd.DataFrame(
   .....:     {"Color": "Red Red Red Blue".split(), "Value": [100, 150, 50, 50]}
   .....: )
   .....: 

In [132]: df
Out[132]: 
  Color  Value
0   Red    100
1   Red    150
2   Red     50
3  Blue     50

In [133]: df["Counts"] = df.groupby(["Color"]).transform(len)

In [134]: df
Out[134]: 
  Color  Value  Counts
0   Red    100       3
1   Red    150       3
2   Red     50       3
3  Blue     50       1

根据索引移动列中的值组

In [135]: df = pd.DataFrame(
   .....:     {"line_race": [10, 10, 8, 10, 10, 8], "beyer": [99, 102, 103, 103, 88, 100]},
   .....:     index=[
   .....:         "Last Gunfighter",
   .....:         "Last Gunfighter",
   .....:         "Last Gunfighter",
   .....:         "Paynter",
   .....:         "Paynter",
   .....:         "Paynter",
   .....:     ],
   .....: )
   .....: 

In [136]: df
Out[136]: 
                 line_race  beyer
Last Gunfighter         10     99
Last Gunfighter         10    102
Last Gunfighter          8    103
Paynter                 10    103
Paynter                 10     88
Paynter                  8    100

In [137]: df["beyer_shifted"] = df.groupby(level=0)["beyer"].shift(1)

In [138]: df
Out[138]: 
                 line_race  beyer  beyer_shifted
Last Gunfighter         10     99            NaN
Last Gunfighter         10    102           99.0
Last Gunfighter          8    103          102.0
Paynter                 10    103            NaN
Paynter                 10     88          103.0
Paynter                  8    100           88.0

从每组中选择具有最大值的行

In [139]: df = pd.DataFrame(
   .....:     {
   .....:         "host": ["other", "other", "that", "this", "this"],
   .....:         "service": ["mail", "web", "mail", "mail", "web"],
   .....:         "no": [1, 2, 1, 2, 1],
   .....:     }
   .....: ).set_index(["host", "service"])
   .....: 

In [140]: mask = df.groupby(level=0).agg("idxmax")

In [141]: df_count = df.loc[mask["no"]].reset_index()

In [142]: df_count
Out[142]: 
    host service  no
0  other     web   2
1   that    mail   1
2   this    mail   2

像Python的itertools.groupby一样分组

In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=["A"])

In [144]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).groups
Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}

In [145]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).cumsum()
Out[145]: 
0    0
1    1
2    0
3    1
4    2
5    3
6    0
7    1
8    2
Name: A, dtype: int64

扩展数据#

对齐和最新

基于值而不是计数的滚动计算窗口

按时间间隔滚动平均值

分裂#

分割框架

创建数据帧列表,使用基于行中包含的逻辑的描述进行分割。

In [146]: df = pd.DataFrame(
   .....:     data={
   .....:         "Case": ["A", "A", "A", "B", "A", "A", "B", "A", "A"],
   .....:         "Data": np.random.randn(9),
   .....:     }
   .....: )
   .....: 

In [147]: dfs = list(
   .....:     zip(
   .....:         *df.groupby(
   .....:             (1 * (df["Case"] == "B"))
   .....:             .cumsum()
   .....:             .rolling(window=3, min_periods=1)
   .....:             .median()
   .....:         )
   .....:     )
   .....: )[-1]
   .....: 

In [148]: dfs[0]
Out[148]: 
  Case      Data
0    A  0.276232
1    A -1.087401
2    A -0.673690
3    B  0.113648

In [149]: dfs[1]
Out[149]: 
  Case      Data
4    A -1.478427
5    A  0.524988
6    B  0.404705

In [150]: dfs[2]
Out[150]: 
  Case      Data
7    A  0.577046
8    A -1.715002

枢轴#

枢轴文档

部分总额和小计

In [151]: df = pd.DataFrame(
   .....:     data={
   .....:         "Province": ["ON", "QC", "BC", "AL", "AL", "MN", "ON"],
   .....:         "City": [
   .....:             "Toronto",
   .....:             "Montreal",
   .....:             "Vancouver",
   .....:             "Calgary",
   .....:             "Edmonton",
   .....:             "Winnipeg",
   .....:             "Windsor",
   .....:         ],
   .....:         "Sales": [13, 6, 16, 8, 4, 3, 1],
   .....:     }
   .....: )
   .....: 

In [152]: table = pd.pivot_table(
   .....:     df,
   .....:     values=["Sales"],
   .....:     index=["Province"],
   .....:     columns=["City"],
   .....:     aggfunc="sum",
   .....:     margins=True,
   .....: )
   .....: 

In [153]: table.stack("City", future_stack=True)
Out[153]: 
                    Sales
Province City            
AL       Calgary      8.0
         Edmonton     4.0
         Montreal     NaN
         Toronto      NaN
         Vancouver    NaN
...                   ...
All      Toronto     13.0
         Vancouver   16.0
         Windsor      1.0
         Winnipeg     3.0
         All         51.0

[48 rows x 1 columns]

R 中类似 plyr 的频率表

In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]

In [155]: df = pd.DataFrame(
   .....:     {
   .....:         "ID": ["x%d" % r for r in range(10)],
   .....:         "Gender": ["F", "M", "F", "M", "F", "M", "F", "M", "M", "M"],
   .....:         "ExamYear": [
   .....:             "2007",
   .....:             "2007",
   .....:             "2007",
   .....:             "2008",
   .....:             "2008",
   .....:             "2008",
   .....:             "2008",
   .....:             "2009",
   .....:             "2009",
   .....:             "2009",
   .....:         ],
   .....:         "Class": [
   .....:             "algebra",
   .....:             "stats",
   .....:             "bio",
   .....:             "algebra",
   .....:             "algebra",
   .....:             "stats",
   .....:             "stats",
   .....:             "algebra",
   .....:             "bio",
   .....:             "bio",
   .....:         ],
   .....:         "Participated": [
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "no",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:             "yes",
   .....:         ],
   .....:         "Passed": ["yes" if x > 50 else "no" for x in grades],
   .....:         "Employed": [
   .....:             True,
   .....:             True,
   .....:             True,
   .....:             False,
   .....:             False,
   .....:             False,
   .....:             False,
   .....:             True,
   .....:             True,
   .....:             False,
   .....:         ],
   .....:         "Grade": grades,
   .....:     }
   .....: )
   .....: 

In [156]: df.groupby("ExamYear").agg(
   .....:     {
   .....:         "Participated": lambda x: x.value_counts()["yes"],
   .....:         "Passed": lambda x: sum(x == "yes"),
   .....:         "Employed": lambda x: sum(x),
   .....:         "Grade": lambda x: sum(x) / len(x),
   .....:     }
   .....: )
   .....: 
Out[156]: 
          Participated  Passed  Employed      Grade
ExamYear                                           
2007                 3       2         3  74.000000
2008                 3       3         0  68.500000
2009                 3       2         2  60.666667

用逐年数据绘制 pandas DataFrame

要创建年份和月份交叉表:

In [157]: df = pd.DataFrame(
   .....:     {"value": np.random.randn(36)},
   .....:     index=pd.date_range("2011-01-01", freq="ME", periods=36),
   .....: )
   .....: 

In [158]: pd.pivot_table(
   .....:     df, index=df.index.month, columns=df.index.year, values="value", aggfunc="sum"
   .....: )
   .....: 
Out[158]: 
        2011      2012      2013
1  -1.039268 -0.968914  2.565646
2  -0.370647 -1.294524  1.431256
3  -1.157892  0.413738  1.340309
4  -1.344312  0.276662 -1.170299
5   0.844885 -0.472035 -0.226169
6   1.075770 -0.013960  0.410835
7  -0.109050 -0.362543  0.813850
8   1.643563 -0.006154  0.132003
9  -1.469388 -0.923061 -0.827317
10  0.357021  0.895717 -0.076467
11 -0.674600  0.805244 -1.187678
12 -1.776904 -1.206412  1.130127

申请

滚动应用到组织 - 将嵌入列表转换为多索引框架

In [159]: df = pd.DataFrame(
   .....:     data={
   .....:         "A": [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
   .....:         "B": [["a", "b", "c"], ["jj", "kk"], ["ccc"]],
   .....:     },
   .....:     index=["I", "II", "III"],
   .....: )
   .....: 

In [160]: def SeriesFromSubList(aList):
   .....:     return pd.Series(aList)
   .....: 

In [161]: df_orgz = pd.concat(
   .....:     {ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()}
   .....: )
   .....: 

In [162]: df_orgz
Out[162]: 
         0     1     2     3
I   A    2     4     8  16.0
    B    a     b     c   NaN
II  A  100   200   NaN   NaN
    B   jj    kk   NaN   NaN
III A   10  20.0  30.0   NaN
    B  ccc   NaN   NaN   NaN

滚动应用返回系列的 DataFrame

滚动应用于多个列,其中函数在返回系列中的标量之前计算系列

In [163]: df = pd.DataFrame(
   .....:     data=np.random.randn(2000, 2) / 10000,
   .....:     index=pd.date_range("2001-01-01", periods=2000),
   .....:     columns=["A", "B"],
   .....: )
   .....: 

In [164]: df
Out[164]: 
                   A         B
2001-01-01 -0.000144 -0.000141
2001-01-02  0.000161  0.000102
2001-01-03  0.000057  0.000088
2001-01-04 -0.000221  0.000097
2001-01-05 -0.000201 -0.000041
...              ...       ...
2006-06-19  0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113  0.000114
2006-06-22  0.000136  0.000109
2006-06-23  0.000027  0.000030

[2000 rows x 2 columns]

In [165]: def gm(df, const):
   .....:     v = ((((df["A"] + df["B"]) + 1).cumprod()) - 1) * const
   .....:     return v.iloc[-1]
   .....: 

In [166]: s = pd.Series(
   .....:     {
   .....:         df.index[i]: gm(df.iloc[i: min(i + 51, len(df) - 1)], 5)
   .....:         for i in range(len(df) - 50)
   .....:     }
   .....: )
   .....: 

In [167]: s
Out[167]: 
2001-01-01    0.000930
2001-01-02    0.002615
2001-01-03    0.001281
2001-01-04    0.001117
2001-01-05    0.002772
                ...   
2006-04-30    0.003296
2006-05-01    0.002629
2006-05-02    0.002081
2006-05-03    0.004247
2006-05-04    0.003928
Length: 1950, dtype: float64

使用返回标量的 DataFrame 进行滚动应用

滚动应用于函数返回标量(成交量加权平均价格)的多个列

In [168]: rng = pd.date_range(start="2014-01-01", periods=100)

In [169]: df = pd.DataFrame(
   .....:     {
   .....:         "Open": np.random.randn(len(rng)),
   .....:         "Close": np.random.randn(len(rng)),
   .....:         "Volume": np.random.randint(100, 2000, len(rng)),
   .....:     },
   .....:     index=rng,
   .....: )
   .....: 

In [170]: df
Out[170]: 
                Open     Close  Volume
2014-01-01 -1.611353 -0.492885    1219
2014-01-02 -3.000951  0.445794    1054
2014-01-03 -0.138359 -0.076081    1381
2014-01-04  0.301568  1.198259    1253
2014-01-05  0.276381 -0.669831    1728
...              ...       ...     ...
2014-04-06 -0.040338  0.937843    1188
2014-04-07  0.359661 -0.285908    1864
2014-04-08  0.060978  1.714814     941
2014-04-09  1.759055 -0.455942    1065
2014-04-10  0.138185 -1.147008    1453

[100 rows x 3 columns]

In [171]: def vwap(bars):
   .....:     return (bars.Close * bars.Volume).sum() / bars.Volume.sum()
   .....: 

In [172]: window = 5

In [173]: s = pd.concat(
   .....:     [
   .....:         (pd.Series(vwap(df.iloc[i: i + window]), index=[df.index[i + window]]))
   .....:         for i in range(len(df) - window)
   .....:     ]
   .....: )
   .....: 

In [174]: s.round(2)
Out[174]: 
2014-01-06    0.02
2014-01-07    0.11
2014-01-08    0.10
2014-01-09    0.07
2014-01-10   -0.29
              ... 
2014-04-06   -0.63
2014-04-07   -0.02
2014-04-08   -0.03
2014-04-09    0.34
2014-04-10    0.29
Length: 95, dtype: float64

时间序列

时间之间

在时间之间使用索引器

构建排除周末并仅包含特定时间的日期时间范围

矢量化查找

聚合和绘制时间序列

将列为小时、行为天的矩阵转换为时间序列形式的连续行序列。 如何重新排列 Python pandas DataFrame?

将时间序列重新索引到指定频率时处理重复项

计算 DatetimeIndex 中每个条目的该月的第一天

In [175]: dates = pd.date_range("2000-01-01", periods=5)

In [176]: dates.to_period(freq="M").to_timestamp()
Out[176]: 
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
               '2000-01-01'],
              dtype='datetime64[ns]', freq=None)

重新采样#

重新采样文档。

使用 Grouper 而不是 TimeGrouper 对值进行时间分组

具有一些缺失值的时间分组

Grouper时间序列的有效频率参数

使用多重索引进行分组

使用 TimeGrouper 和另一个分组创建子组,然后应用自定义函数GH 3791

使用自定义周期重新采样

重新采样日内帧而不添加新的日期

重新采样分钟数据

使用 groupby 重新采样

合并#

连接文档。

连接两个具有重叠索引的数据帧(模拟 R rbind)

In [177]: rng = pd.date_range("2000-01-01", periods=6)

In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=["A", "B", "C"])

In [179]: df2 = df1.copy()

根据 df 结构,ignore_index可能需要

In [180]: df = pd.concat([df1, df2], ignore_index=True)

In [181]: df
Out[181]: 
           A         B         C
0  -0.870117 -0.479265 -0.790855
1   0.144817  1.726395 -0.464535
2  -0.821906  1.597605  0.187307
3  -0.128342 -1.511638 -0.289858
4   0.399194 -1.430030 -0.639760
5   1.115116 -2.012600  1.810662
6  -0.870117 -0.479265 -0.790855
7   0.144817  1.726395 -0.464535
8  -0.821906  1.597605  0.187307
9  -0.128342 -1.511638 -0.289858
10  0.399194 -1.430030 -0.639760
11  1.115116 -2.012600  1.810662

数据帧的自连接GH 2996

In [182]: df = pd.DataFrame(
   .....:     data={
   .....:         "Area": ["A"] * 5 + ["C"] * 2,
   .....:         "Bins": [110] * 2 + [160] * 3 + [40] * 2,
   .....:         "Test_0": [0, 1, 0, 1, 2, 0, 1],
   .....:         "Data": np.random.randn(7),
   .....:     }
   .....: )
   .....: 

In [183]: df
Out[183]: 
  Area  Bins  Test_0      Data
0    A   110       0 -0.433937
1    A   110       1 -0.160552
2    A   160       0  0.744434
3    A   160       1  1.754213
4    A   160       2  0.000850
5    C    40       0  0.342243
6    C    40       1  1.070599

In [184]: df["Test_1"] = df["Test_0"] - 1

In [185]: pd.merge(
   .....:     df,
   .....:     df,
   .....:     left_on=["Bins", "Area", "Test_0"],
   .....:     right_on=["Bins", "Area", "Test_1"],
   .....:     suffixes=("_L", "_R"),
   .....: )
   .....: 
Out[185]: 
  Area  Bins  Test_0_L    Data_L  Test_1_L  Test_0_R    Data_R  Test_1_R
0    A   110         0 -0.433937        -1         1 -0.160552         0
1    A   160         0  0.744434        -1         1  1.754213         0
2    A   160         1  1.754213         0         2  0.000850         1
3    C    40         0  0.342243        -1         1  1.070599         0

如何设置索引和连接

KDB 像 asof 加入

使用基于值的标准加入

使用 searchsorted 根据范围内的值进行合并

绘图#

绘图文档。

让 Matplotlib 看起来像 R

设置 x 轴主要和次要标签

在 IPython Jupyter 笔记本中绘制多个图表

创建多线图

绘制热图

注释时间序列图

注释时间序列图 #2

使用 Pandas、Vincent 和 xlsxwriter 在 Excel 文件中生成嵌入图

分层变量的每个四分位数的箱线图

In [186]: df = pd.DataFrame(
   .....:     {
   .....:         "stratifying_var": np.random.uniform(0, 100, 20),
   .....:         "price": np.random.normal(100, 5, 20),
   .....:     }
   .....: )
   .....: 

In [187]: df["quartiles"] = pd.qcut(
   .....:     df["stratifying_var"], 4, labels=["0-25%", "25-50%", "50-75%", "75-100%"]
   .....: )
   .....: 

In [188]: df.boxplot(column="price", by="quartiles")
Out[188]: <Axes: title={'center': 'price'}, xlabel='quartiles'>
../_images/quartile_boxplot.png

数据输入/输出#

SQL 与 HDF5 的性能比较

CSV #

CSV文档

read_csv 实际操作

附加到 csv

逐块读取 csv

仅逐块读取 csv 的某些行

读取帧的前几行

读取已压缩但未压缩的文件gzip/bz2(可以理解的本机压缩格式read_csv)。此示例显示了一个WinZipped文件,但它是在上下文管理器中打开文件并使用该句柄进行读取的一般应用程序。 看这里

从文件推断数据类型

处理坏线GH 2886

编写多行索引 CSV 而不写入重复项

读取多个文件以创建单个 DataFrame #

将多个文件组合成单个 DataFrame 的最佳方法是逐个读取各个帧,将所有各个帧放入一个列表中,然后使用以下方法组合列表中的帧pd.concat()

In [189]: for i in range(3):
   .....:     data = pd.DataFrame(np.random.randn(10, 4))
   .....:     data.to_csv("file_{}.csv".format(i))
   .....: 

In [190]: files = ["file_0.csv", "file_1.csv", "file_2.csv"]

In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

您可以使用相同的方法来读取与模式匹配的所有文件。这是一个使用的示例glob

In [192]: import glob

In [193]: import os

In [194]: files = glob.glob("file_*.csv")

In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

最后,该策略将与io 文档pd.read_*(...)中描述的其他功能一起使用。

解析多列中的日期组件#

使用格式解析多列中的日期组件速度更快

In [196]: i = pd.date_range("20000101", periods=10000)

In [197]: df = pd.DataFrame({"year": i.year, "month": i.month, "day": i.day})

In [198]: df.head()
Out[198]: 
   year  month  day
0  2000      1    1
1  2000      1    2
2  2000      1    3
3  2000      1    4
4  2000      1    5

In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
   .....: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1)
   .....: ds.head()
   .....: %timeit pd.to_datetime(ds)
   .....: 
4.01 ms +- 635 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
1.05 ms +- 7.39 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)

跳过标题和数据之间的行#

In [200]: data = """;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....:  ;;;;
   .....:  ;;;;
   .....: ;;;;
   .....: date;Param1;Param2;Param4;Param5
   .....:     ;m²;°C;m²;m
   .....: ;;;;
   .....: 01.01.1990 00:00;1;1;2;3
   .....: 01.01.1990 01:00;5;3;4;5
   .....: 01.01.1990 02:00;9;5;6;7
   .....: 01.01.1990 03:00;13;7;8;9
   .....: 01.01.1990 04:00;17;9;10;11
   .....: 01.01.1990 05:00;21;11;12;13
   .....: """
   .....: 
选项 1:显式传递行以跳过行#
In [201]: from io import StringIO

In [202]: pd.read_csv(
   .....:     StringIO(data),
   .....:     sep=";",
   .....:     skiprows=[11, 12],
   .....:     index_col=0,
   .....:     parse_dates=True,
   .....:     header=10,
   .....: )
   .....: 
Out[202]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13
选项 2:读取列名,然后读取数据#
In [203]: pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')

In [204]: columns = pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns

In [205]: pd.read_csv(
   .....:     StringIO(data), sep=";", index_col=0, header=12, parse_dates=True, names=columns
   .....: )
   .....: 
Out[205]: 
                     Param1  Param2  Param4  Param5
date                                               
1990-01-01 00:00:00       1       1       2       3
1990-01-01 01:00:00       5       3       4       5
1990-01-01 02:00:00       9       5       6       7
1990-01-01 03:00:00      13       7       8       9
1990-01-01 04:00:00      17       9      10      11
1990-01-01 05:00:00      21      11      12      13

SQL #

SQL文档

使用 SQL 从数据库读取

Excel #

Excel文档

从类似文件的句柄读取

修改 XlsxWriter 输出中的格式

仅加载可见工作表GH 19842#issuecomment-892150745

HTML #

从无法处理默认请求标头的服务器读取 HTML 表

HDF 商店#

HDFStores文档

使用时间戳索引的简单查询

使用链接的多表层次结构管理异构数据GH 3032

合并具有数百万行的磁盘表

避免从多个进程/线程写入存储时出现不一致

按块对大型存储进行重复数据删除,本质上是一种递归归约操作。显示一个从 csv 文件获取数据并按块创建存储的函数,还可以进行日期解析。 看这里

从 csv 文件逐块创建存储

附加到存储,同时创建唯一索引

大数据工作流程

读取文件序列,然后在追加时向存储提供全局唯一索引

低组密度的 HDFStore 上的 Groupby

HDFStore 上具有高组密度的 Groupby

HDFStore 上的分层查询

使用 HDFStore 进行计数

HDFStore 异常故障排除

使用字符串设置 min_itemsize

使用 ptrepack 在存储上创建完全排序索引

将属性存储到组节点

In [206]: df = pd.DataFrame(np.random.randn(8, 3))

In [207]: store = pd.HDFStore("test.h5")

In [208]: store.put("df", df)

# you can store an arbitrary Python object via pickle
In [209]: store.get_storer("df").attrs.my_attribute = {"A": 10}

In [210]: store.get_storer("df").attrs.my_attribute
Out[210]: {'A': 10}

您可以通过将参数传递给 PyTables 在内存中创建或加载 HDFStore driver 。仅当 HDFStore 关闭时,更改才会写入磁盘。

In [211]: store = pd.HDFStore("test.h5", "w", driver="H5FD_CORE")

In [212]: df = pd.DataFrame(np.random.randn(8, 3))

In [213]: store["test"] = df

# only after closing the store, data is written to disk:
In [214]: store.close()

二进制文件#

如果您需要读取由 C 结构体数组组成的二进制文件,pandas 很容易接受 NumPy 记录数组。例如,假设这个 C 程序位于64 位机器上名为main.cCompiled with 的文件中,gcc main.c -std=gnu99

#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
    int32_t count;
    double avg;
    float scale;
} Data;

int main(int argc, const char *argv[])
{
    size_t n = 10;
    Data d[n];

    for (int i = 0; i < n; ++i)
    {
        d[i].count = i;
        d[i].avg = i + 1.0;
        d[i].scale = (float) i + 2.0f;
    }

    FILE *file = fopen("binary.dat", "wb");
    fwrite(&d, sizeof(Data), n, file);
    fclose(file);

    return 0;
}

以下 Python 代码会将二进制文件读'binary.dat'入 pandas DataFrame,其中结构的每个元素对应于框架中的一列:

names = "count", "avg", "scale"

# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = "i4", "f8", "f4"
dt = np.dtype({"names": names, "offsets": offsets, "formats": formats}, align=True)
df = pd.DataFrame(np.fromfile("binary.dat", dt))

笔记

结构元素的偏移量可能会有所不同,具体取决于创建文件的计算机的体系结构。不建议使用这样的原始二进制文件格式进行一般数据存储,因为它不是跨平台的。我们推荐 HDF5 或 parquet,这两者都受到 pandas IO 设施的支持。

计算#

时间序列的数值积分(基于样本)

相关性

通常,获得由 计算得出的相关矩阵的下(或上)三角形式很有用DataFrame.corr()。这可以通过传递布尔掩码来实现,where如下所示:

In [215]: df = pd.DataFrame(np.random.random(size=(100, 5)))

In [216]: corr_mat = df.corr()

In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool_), k=-1)

In [218]: corr_mat.where(mask)
Out[218]: 
          0         1         2        3   4
0       NaN       NaN       NaN      NaN NaN
1 -0.079861       NaN       NaN      NaN NaN
2 -0.236573  0.183801       NaN      NaN NaN
3 -0.013795 -0.051975  0.037235      NaN NaN
4 -0.031974  0.118342 -0.073499 -0.02063 NaN

除了指定的相关类型之外,其中的参数还可以接受可调用的methodDataFrame.corr这里我们计算一个对象的距离相关DataFrame矩阵。

In [219]: def distcorr(x, y):
   .....:     n = len(x)
   .....:     a = np.zeros(shape=(n, n))
   .....:     b = np.zeros(shape=(n, n))
   .....:     for i in range(n):
   .....:         for j in range(i + 1, n):
   .....:             a[i, j] = abs(x[i] - x[j])
   .....:             b[i, j] = abs(y[i] - y[j])
   .....:     a += a.T
   .....:     b += b.T
   .....:     a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
   .....:     b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
   .....:     A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
   .....:     B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
   .....:     cov_ab = np.sqrt(np.nansum(A * B)) / n
   .....:     std_a = np.sqrt(np.sqrt(np.nansum(A ** 2)) / n)
   .....:     std_b = np.sqrt(np.sqrt(np.nansum(B ** 2)) / n)
   .....:     return cov_ab / std_a / std_b
   .....: 

In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3)))

In [221]: df.corr(method=distcorr)
Out[221]: 
          0         1         2
0  1.000000  0.197613  0.216328
1  0.197613  1.000000  0.208749
2  0.216328  0.208749  1.000000

时间增量#

Timedeltas文档

使用时间增量

In [222]: import datetime

In [223]: s = pd.Series(pd.date_range("2012-1-1", periods=3, freq="D"))

In [224]: s - s.max()
Out[224]: 
0   -2 days
1   -1 days
2    0 days
dtype: timedelta64[ns]

In [225]: s.max() - s
Out[225]: 
0   2 days
1   1 days
2   0 days
dtype: timedelta64[ns]

In [226]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[226]: 
0   364 days 20:55:00
1   365 days 20:55:00
2   366 days 20:55:00
dtype: timedelta64[ns]

In [227]: s + datetime.timedelta(minutes=5)
Out[227]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[228]: 
0   -365 days +03:05:00
1   -366 days +03:05:00
2   -367 days +03:05:00
dtype: timedelta64[ns]

In [229]: datetime.timedelta(minutes=5) + s
Out[229]: 
0   2012-01-01 00:05:00
1   2012-01-02 00:05:00
2   2012-01-03 00:05:00
dtype: datetime64[ns]

添加和减go增量和日期

In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [231]: df = pd.DataFrame({"A": s, "B": deltas})

In [232]: df
Out[232]: 
           A      B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [233]: df["New Dates"] = df["A"] + df["B"]

In [234]: df["Delta"] = df["A"] - df["New Dates"]

In [235]: df
Out[235]: 
           A      B  New Dates   Delta
0 2012-01-01 0 days 2012-01-01  0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [236]: df.dtypes
Out[236]: 
A             datetime64[ns]
B            timedelta64[ns]
New Dates     datetime64[ns]
Delta        timedelta64[ns]
dtype: object

另一个例子

可以使用 np.nan 将值设置为 NaT,类似于 datetime

In [237]: y = s - s.shift()

In [238]: y
Out[238]: 
0      NaT
1   1 days
2   1 days
dtype: timedelta64[ns]

In [239]: y[1] = np.nan

In [240]: y
Out[240]: 
0      NaT
1      NaT
2   1 days
dtype: timedelta64[ns]

创建示例数据#

要根据某些给定值的每种组合创建数据框(例如 R 的expand.grid() 函数),我们可以创建一个字典,其中键是列名称,值是数据值列表:

In [241]: def expand_grid(data_dict):
   .....:     rows = itertools.product(*data_dict.values())
   .....:     return pd.DataFrame.from_records(rows, columns=data_dict.keys())
   .....: 

In [242]: df = expand_grid(
   .....:     {"height": [60, 70], "weight": [100, 140, 180], "sex": ["Male", "Female"]}
   .....: )
   .....: 

In [243]: df
Out[243]: 
    height  weight     sex
0       60     100    Male
1       60     100  Female
2       60     140    Male
3       60     140  Female
4       60     180    Male
5       60     180  Female
6       70     100    Male
7       70     100  Female
8       70     140    Male
9       70     140  Female
10      70     180    Male
11      70     180  Female

常数系列#

要评估一个序列是否具有常数值,我们可以检查 是否。但是,一种更高效的方法(不首先计算所有唯一值)是:series.nunique() <= 1

In [244]: v = s.to_numpy()

In [245]: is_constant = v.shape[0] == 0 or (s[0] == s).all()

此方法假设该系列不包含缺失值。对于要删除 NA 值的情况,我们可以先删除这些值:

In [246]: v = s.dropna().to_numpy()

In [247]: is_constant = v.shape[0] == 0 or (s[0] == s).all()

如果缺失值被认为与任何其他值不同,那么可以使用:

In [248]: v = s.to_numpy()

In [249]: is_constant = v.shape[0] == 0 or (s[0] == s).all() or not pd.notna(v).any()

(请注意,此示例不会消除np.nan,pd.NA和之间的歧义None