pandas.DataFrame.to_xarray #

数据框。to_xarray ( ) [来源] #

从 pandas 对象返回一个 xarray 对象。

返回
xarray.DataArray 或 xarray.Dataset

如果对象是 DataFrame,则 pandas 结构中的数据转换为 Dataset;如果对象是 Series,则转换为 DataArray。

也可以看看

DataFrame.to_hdf

将 DataFrame 写入 HDF5 文件。

DataFrame.to_parquet

将 DataFrame 写入二进制 parquet 格式。

笔记

请参阅xarray 文档

例子

>>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2),
...                    ('parrot', 'bird', 24.0, 2),
...                    ('lion', 'mammal', 80.5, 4),
...                    ('monkey', 'mammal', np.nan, 4)],
...                   columns=['name', 'class', 'max_speed',
...                            'num_legs'])
>>> df
     name   class  max_speed  num_legs
0  falcon    bird      389.0         2
1  parrot    bird       24.0         2
2    lion  mammal       80.5         4
3  monkey  mammal        NaN         4
>>> df.to_xarray()  
<xarray.Dataset>
Dimensions:    (index: 4)
Coordinates:
  * index      (index) int64 32B 0 1 2 3
Data variables:
    name       (index) object 32B 'falcon' 'parrot' 'lion' 'monkey'
    class      (index) object 32B 'bird' 'bird' 'mammal' 'mammal'
    max_speed  (index) float64 32B 389.0 24.0 80.5 nan
    num_legs   (index) int64 32B 2 2 4 4
>>> df['max_speed'].to_xarray()  
<xarray.DataArray 'max_speed' (index: 4)>
array([389. ,  24. ,  80.5,   nan])
Coordinates:
  * index    (index) int64 0 1 2 3
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-01',
...                         '2018-01-02', '2018-01-02'])
>>> df_multiindex = pd.DataFrame({'date': dates,
...                               'animal': ['falcon', 'parrot',
...                                          'falcon', 'parrot'],
...                               'speed': [350, 18, 361, 15]})
>>> df_multiindex = df_multiindex.set_index(['date', 'animal'])
>>> df_multiindex
                   speed
date       animal
2018-01-01 falcon    350
           parrot     18
2018-01-02 falcon    361
           parrot     15
>>> df_multiindex.to_xarray()  
<xarray.Dataset>
Dimensions:  (date: 2, animal: 2)
Coordinates:
  * date     (date) datetime64[ns] 2018-01-01 2018-01-02
  * animal   (animal) object 'falcon' 'parrot'
Data variables:
    speed    (date, animal) int64 350 18 361 15